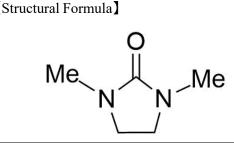

DMI[™] is an aprotic solvent with high polarity.

1,3-Dímethyl-2-Imídazolídínone


Product Overveiw

DMITM is an aprotic solvent with high polarity. DMITM is used in a wide range of fields for its excellent dissolving power, stability, and high quality

[Substance]

Ι

Chemical Name	1,3-Dimethyl-2-Imidazolidinone] [
Synonyms	DMEU Dimethylethyleneurea	
CAS No.	80-73-9	

[Regulatory Information]

United States	TSCA:	On this inventory, or in compliance with the inventory.
European Union	REACH:	Contact us for information.
Canada	DSL: NDSL:	Not in compliance with the inventory.
Australia	AICS:	On this inventory, or in compliance with the inventory.

[Characteristic] <u>Physical properties</u>

DMITM is easy to handle since boiling point and flash point are high, and freezing point is low. (Boiling point 222°C, Flash point 120°C(open cup)/ 95°C(closed cup), Melting point 7.5°C)

Stability

Compared to general aprotic polar solvents, DMITM is stable even in the presence of acids and alkalis. DMITM has excellent resistance to acids and alkalis at high temperature

Solubility

Due to high dielectric constant and dipole moment, DMITM exhibits high solubility in various inorganic and organic compounds.

[Applications] Reaction solvents (for synthesis of pharmaceuticals, agricultural chemicals, and polymers), detergents, additives, solvents, surface treatment agents etc.

	pecification	
18	necitication	

Items	Specification	Test method
APPEARANCE	COLORLESS LIQUID	MCI method
COLOR (APHA)	\leq 50	MCI method
PURITY (GC%)	≧98.0	MCI method
REFRACTIVE INDEX ($n \frac{25}{D}$)	1.468 -1.473	MCI method
MOISTURE (wt%)	≤ 0.1	MCI method

[Packing]

Container	Net weight
Iron Can	18KG
Iron Drum	200KG

1. Physical Constants

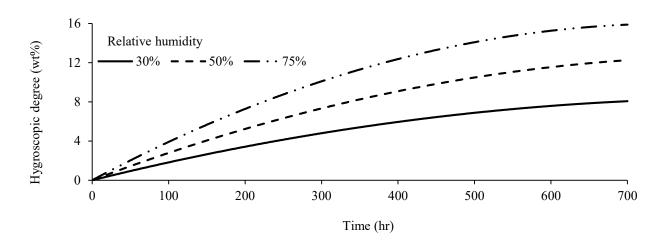
Items	Units	Physical constants
Molecular weight	—	114.14
Boiling point	(°C)	222 (760mmHg)
Melting point	(°C)	7.5
Specific gravity	(d_{4}^{20})	1.06
Refractive index ¹⁾	(n ²⁵ _D)	1.471
Kinetic viscosity ¹⁾	(mm^2/S)	1.95 (20°C) 1.43 (40°C)
Surface tension	(mN/m)	41 (20°C)
Specific heat	(J/g·°C)	1.80 (adiabatic continuity method, 20°C)
Heat conductivity	(kJ/hr⋅m⋅°C)	0.62 (thermic rays method, 25°C)
Vaporization latent heat	(kJ/mol)	51.9 (=454.7J/g)
Flash point	(°C)	120 (Cleveland open method) 95 (Pensky-Martens close method)
Dipole moment ¹⁾	(D)	4.05~4.09
Dielectric constant ¹⁾	(F/m)	37.60 (25°C、1MHz)

1) J. Chem. Eng. Data 21, 150 ('76)

2. Physical constants compared with other solvents

DMITM has high values of dielectric constant and dipole moment, and solubility and solvation effect are high compared to similar solvents

	Boiling point (°C)	Melting point (°C)	Dielectric constant ²⁾ (F/m)	Dipole moment(D)	Flash point (°C)	Viscosity ³⁾ (mPa·s)
DMI TM	222	7.5	37.6	4.05 - 4.09	120	1.94
DMF	153	-61	37.6	3.86	53	0.92
DMAC	165.5	-20	37.8	3.72	66	0.92
NMP	220	-24	32	4.09	81.3	1.67

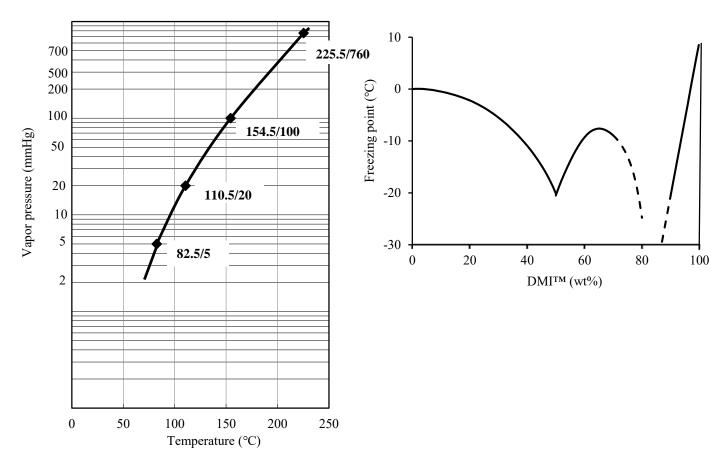

2) 25°C, 1MHz
3) DMI ™ 25°C, Others 20°C

Temperature (°C)	Dielectric constant ⁴⁾ (F/m)	Absolute viscosity (mPa·s)	Density (kg/m ³)	Refractive index (n_D^{25})
25	37.60	1.944	1,052	1.471
35	35.97	1.633	1,043	1.466
45	34.43	1.393	1,034	1.462
55	32.96	1.204	1,025	-
75	30.35	0.938	1,008	-
100	27.42	0.720	986	-

3. Temperature dependency of dielectric constant, viscosity, density and refractive index

4) 25°C, 1MHz

4. Rate of moisture adsorption


5. Change of water content with drying agent

Device exect	Water content(ppm)					
Drying agent	Initial	After 2.5hr	After 68hr	After 116hr		
КОН	1,523	1,624	1,683	2,211		
CaH ₂	1,523	1,260	216	96		
Zeolite A-3 Pellet1.5mmΦ	1,523	200	14	6		

Drying agent (10g) was added in DMI^{TM} (50g). After shaking with hand, the water content was measured by the Karl-Fischer Method.

6. Vapor pressure curve

7. Freezing point of the mixture with water

8. Solubility of inorganic compounds

Inorg.Compd.	g/100g	(°C)	Inorg.Compd.	g/100g	(°C)
AgNO ₃	50	(60)	LiCl	50	(70)
AlCl ₃	35	(20)	NaBH ₄	11.4	(25)
CaCl ₂	5	(20)	NaBr	3.2	(20)
CaF ₂	0.02	(20)	NaCl	0.05	(20)
CH ₃ ONa	0.02	(20)	NaCN	0.02	(20)
CuCl ₂	4	(20)	Na ₂ CO ₃	< 0.01	(20)
FeCl ₃	>50	(20)	Nal	>200	(20)
I ₂	>150	(20)	NaOH	<0.1	(25)
KCN	0.03	(20)	PCl ₃	>50	(20)
K ₂ CO ₃	< 0.01	(20)	P ₂ O ₅	70	(20)
Kl	30	(60)	Mg(ClO ₄) ₂	>50	(60)
КОН	<0.1	(25)	S	11	(100)
KSCN	50	(80)	ZnCl ₂	50	(60)
LiBr	9.3	(20)	ZnO	5	(20)

9. Solubility of inorganic compounds

In and Commit			g/100g (°C	C)			
Inorg.Compd.	DMITM	DMI TM		DMF		NMP	
CaCl ₂	5	(20)	0.5	(r.t.)	-		
FeCl ₃	>50	(20)	>20	(r.t.)	-	_	
I ₂	>150	(20)	>25	(r.t.)	-	_	
KCN	0.03	(20)	0.22	(r.t.)	-	_	
K ₂ CO ₃	< 0.01	(20)	0.05	(r.t.)	-	_	
КОН	<0.1	(25)	0.1	(r.t.)	-	-	
LiBr	9.3	(20)	_	-	25.5	(25)	
NaBH ₄	11.4	(25)	25.5	(r.t.)			
NaBr	3.2	(20)	_	-	5.5	(25)	
NaCl	0.05	(20)	< 0.05	(r.t.)	0.02	(25)	
NaCN	0.02	(20)	0.76 (r.t.)		-	_	
Na ₂ CO ₃	< 0.01	(20)	< 0.05	(r.t.)	-	_	
NaI	>200	(20)	14.4	(r.t.)	28.8	(25)	

10. Solubility of organic compounds (at room temperature)

Org. Compd.	Solubility
Petroleum Benzine	insoluble
Cyclohexane	insoluble
Decalin	soluble
Xylene	soluble
Tetralin	soluble
Chloroform	soluble
Trichloroethylene	soluble
Methanol	soluble
Isopropyl alcohol	soluble
n-Octyl alcohol	soluble
Ethylene glycol	soluble
Ethyl ether	soluble
Tetrahydrofuran	soluble
	-

Org. Compd.	Solubility
Acetone	soluble
Acetic acid	soluble
Acetonitrile	soluble
Benzonitrile	soluble
Dimethylformamide	soluble
Ethyl acetate	soluble
Methyl benzoate	soluble
Aniline	soluble
Pyridine	soluble
Quinoline	soluble
Crbon disulfide	soluble
Sulfolane	soluble
Nitrobenzene	soluble
Nitromethane	soluble

11. Solubility of resins

Chemical name	Solubility% (°C)	
Epoxy resin	>100	(20)
Acrylic styrene resin	>45	(20)
Polystyrene	>45	(20)
Vinylidene fluoride	>30	(20)
Phenol-formaldehyde resin	>20	(20)
Polyvinylchloride	>20	(20)
Nylon	>5	(160)
Polyvinylalcohol	>5	(80)
Polyacrylonitrile	>5	(70)
Ultem	>3	(120)

Chemical name	Solubility% (°C)	
Polysulfone	>3	(20)
Polyethersulfone	>3	(20)
Polymethylmethacrylate	>3	(20)
Polyurethane	>1	(70)
U-polymer	>1	(20)
Noryl	>1	(20)
Polyacrylamide	<1	(120)
Polyetheretherketone	<1	(120)
Polyphenylenesulfide	<1	(120)
Polycarbonate	swollen	(20)
Polytetrafluoroethylene	insoluble	
Polyethylene	Insoluble	

12. Explosibility

Lower explosion limit	1.3%
Upper explosion limit	8.4%

13. Solubility parameter

A solubility parameter is calculated as follows:

$$\delta = \sqrt{\frac{\Delta H - RT}{(M/d/10^3)}} \qquad (J/cm^3)^{1/2} - (1)$$

where

 $\Delta H= heat of vaporization(J/mol)$ $R=gas constant (J/K \cdot mol)$ T=absolute temperature (K)M=molar weight (g/mol)d=density (Kg/m³)

when the following values are substituted in ①,

△H=51,882 (J/mol) R=8.315 (J/K·mol) T=298 (K) M=114.14 (g/mol) d=1,052 (Kg/m³)

The solubility parameter of DMITM is obtained as follows:

 $\delta = \sqrt{\frac{51,882 - (8.315) \times (298)}{(114.14/1,052/10^3)}} = \sqrt{455.3} = 21.3 (J/cm^3)^{1/2}$

14. Distribution coefficients between organic compounds and water

Org. Compd.	Distribution coefficient (27℃~30℃)
Chloroform	2.5
Dichloromethane	2.5
1,2-Dichloroethane	0.77
1,1,2-Trichlorethylene	0.26
Benzene	0.22
Toluene	0.14
1,1,2-Trichloroethane	0.12
Diethylether	0.06

Distribution coefficient = conc.of DMI^{TM} in org.layer/ conc.of DMI^{TM} in water layer

III Chemical properties

Stability to acids and alkalines

DMITM can be used for a wide variety of uses because DMITM has higher heat stability in the presence of acids and alkalines than general aprotic polar solvents.

 \clubsuit Stability in acids (in a stream of N₂)

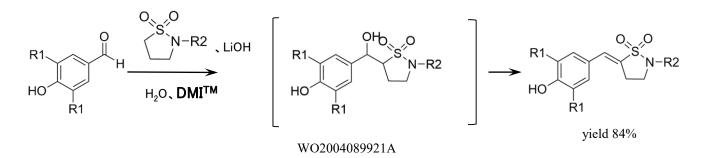
	DMI TM Residual ratio (%)		2	
	0hr	12hr	0hr	12hr
Flake NaOH(3g)/ DMI TM or NMP (30g), 200°C	100	100	100	69
Powder $K_2CO_3(3g)$ / DMI TM or NMP(30g), 200°C	100	100	100	86
10% NaOH(3g)/ DMI TM or NMP (7.5g), 100°C	100	100	100	29

\clubsuit Stability in alkalines (in a stream of N₂)

	DMI TM Residual ratio (%)		NMP Residual ratio (%)	
	0hr	12hr	0hr	12hr
50% Sulfuric acid, (15g)/ DMI TM or NMP (30g), 100°C	100	100	100	77

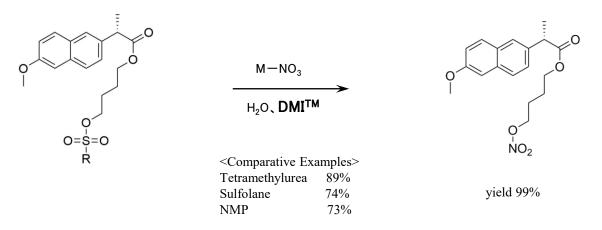
1. Solvent for reaction

With its high dielectric constant and solvation effect, DMITM accelerates anionic nucleophilic reactions, and reactions that place with solvation of cation.


DMITM is thermally and chemically stable with excellent dissolving power for organic and inorganic compounds.

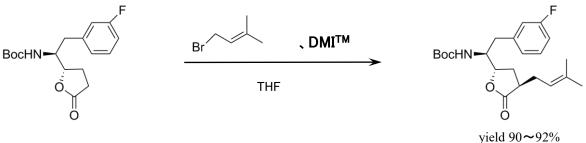
Since DMITM is extremely useful as a reaction solvent, it is used in various reactions to synthesize medical drugs and pesticides.

♦*Pharmaceutical synthesis*


•Aldol condensation

As a reaction solvent in the production of benzylidene derivatives that are used as anti-inflammatory agents.

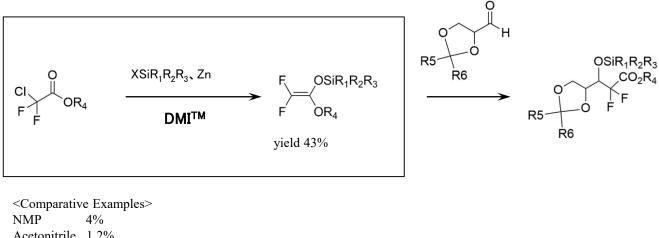
•Nitric acid esterification


As a reaction solvent in the production of (S)-naproxen-4-nitroxybutyl ester used as anti-inflammatory agents, and analgesics.

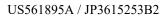
WO2003045896A / JP2005510557T2

Alkylation

(1) As a reaction additive in the production of alkyl compounds of γ -butyrolactone.

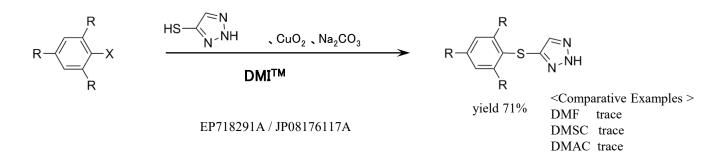

Organic Process Research & Development, (2001),5(6), p609-611

(2) As a reaction additive in the production of substituted acetylene compounds used as pharmaceutical intermediates.

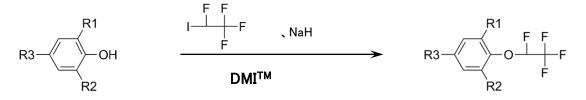

	A−X, DMI [™]			
$M-C\equiv C-B$		► A-C≡C-I	3	
	THF	yield 94%		
A : a saturated or unsaturated aliph	natic hydrocarbon residue of	1 to 20 carbon atoms	<comparative exa<="" td=""><td>amples ></td></comparative>	amples >
X : a halogen atom or an arylsulfor	nyloxy group		Ethylenediamine	66%
M: an alkali metal			Tetramethylurea	62%
B : H, a hydrocarbon residue or -	-C≡C−M		DMF	24%
			NMP	19%
	EP28423	7A1	DMSO	18%

•Silyl etherification

As a reaction solvent in the production of silyl ether compound used as pharmaceutical intermediates.



Acetonitrile1.2%DMFN.D.



♦Agricultural synthesis

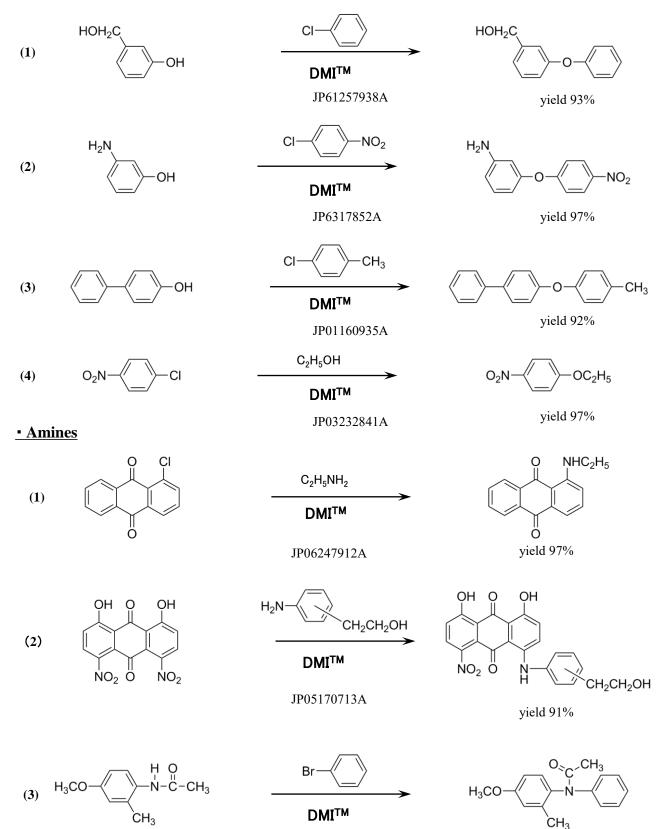
• As a reaction solvent in the production of triazole derivative used as an herbicide.

• As a reaction solvent to produce tetrafluoroethoxybenzenes used as intermediates for germicides, antibacterial agents, insecticides, and herbicides.

(R1, R2:H, F R3:Halogen, Aldehyde, or Mesogenic group)

DE4408151A1

◆*Polymer synthesis*

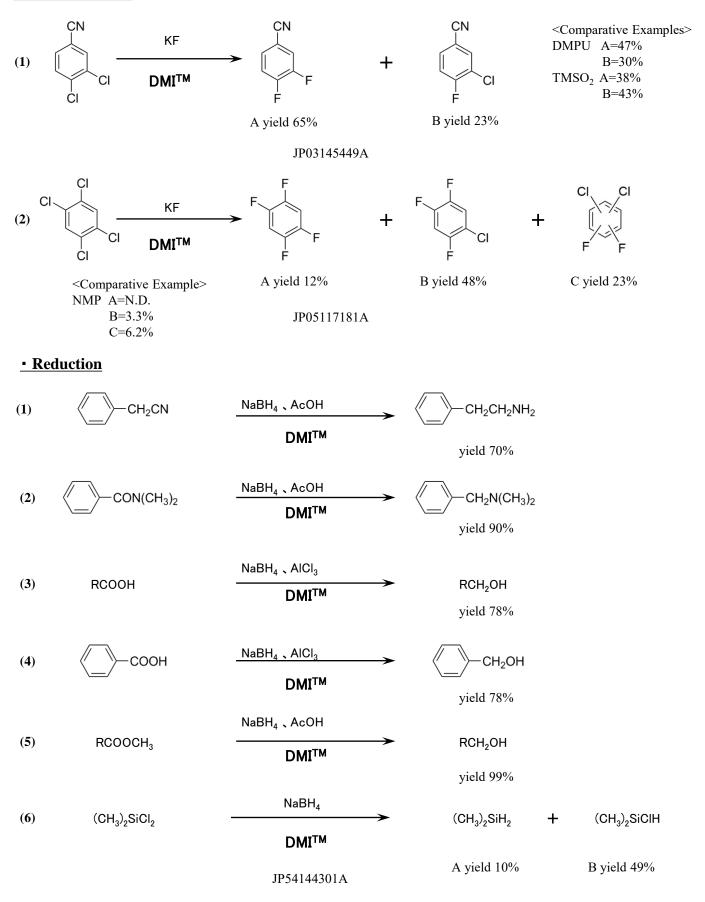

DMITM improves the reactivity with its excellent solubility, cation solvation, and suppresses side reactions because of its high stability at high temperatures and in the presence of alkalis.

- In the production of polyamides and polyimides, DMITM accelerates the formation of amide and imide groups to produce high molecular weight polymers.¹⁾
- Polymers suitable for electronic parts with less ionic impurities can be obtained in the production process of polyphenylene sulfide.²⁾
- DMITM can suppress side reactions in the production process of polyethersulfone to produce high quality polymers.³⁾
- DMITM treatment during film formation of polyimide, stretching of polyether ketone film, and production of polysulfone membrane produces uniform and excellent quality products.⁴⁾

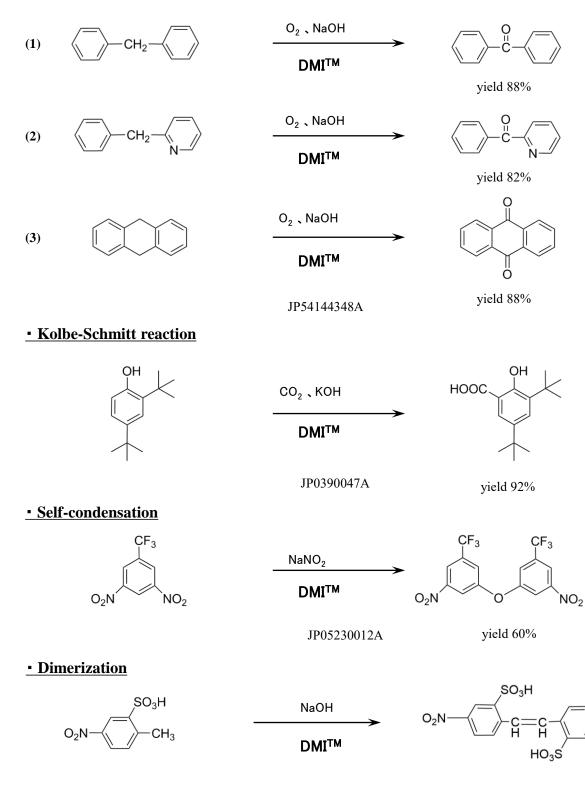
1)JP63108027A, JP 05140308A	3)JP0586186A
2)JP63268740A	4)JP61195130A, JP0313314A, JP6219209A

♦*Other reactions*

• Phenyl ethers



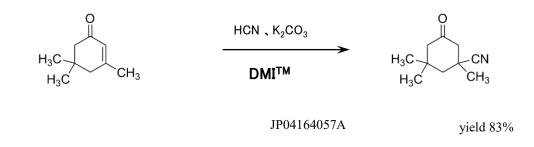
JP63165350A


yield 95%

11

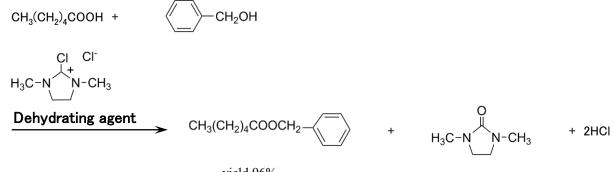
Fluorobenzenes

Oxydation



JP05178796A

yield 90%


NO₂

•Addition reaction

• Dehydrating agent

DMITM reacts with halogenating reagents such as phosgene, oxalyl chloride, and is effective as a dehydrating agent.

yield 96%

JP6245223A

2. Detergents

DMITM has strong dissolving power and is used in detergents such as paint peeling agents and photoresist stripping agents.⁵⁾

5)JP0715111A, JP06228591A

Paint peeling agents

A patent example for DMITM used in paint peeling agents of acrylic, melamine, urethane type resins, which have sufficient paint removability and excellent workability.

The results after the evaluation test is shown in the table with number of changes for each of the following, \odot when changes are observed in the coating and primer resin; O, when the primer resin peels off by disintegration or swelling; Δ when peeling off is observed by partial dissolution or disintegration or swelling; X when no changes are observed (5 test samples were used)

	Composition	Temperature Results		ults		
Detergents	(wt%)	(°C)	Ø	0	Δ	×
DMI TM /EtOH	90/10	50~100	5			
Methylene Chloride	100	40			3	2
DMF	100	50~100			3	2
DMSO	100	50~100			4	1

%Acrylic curable paint with melamine coated on parts of polyolefin resin with primer

(Coating I and coating II have different chemical compositions for the coating and primer resins.)

6)JP2924323B2

Photoresist Stripping Agents

A patent example in which DMITM has been used for photoresist stripping agents that are not corrosive to silver and silver alloys and has high peelability for photoresist and photoresist deteriorated layers⁷

	Results			
Photoresist Stripping Agents	Composition (mass%)	Photoresist Peelability	Photoresist alteration layer Peelability	Corrosive to silver alloys
DMI TM /2-(2-Aminoethoxy)ethanol	70/30	Ø	Ø	Ø
DMI TM /Monoethanolamine	70/30	Ø	Ø	×
DMI TM /Triethanolamine	70/30	×	×	Ø
DMI TM /N,N-Diethanolamine	70/30	0	×	Ø
DMI TM /2-(2-minoethoxy)ethanol/Water	60/30/10	Ø	×	×

Peelability: $O = Eliminable, O = Slight remaining, <math> \times =$ not eliminable

% Corrosive : @=Remain the same, O=Discolored parts occur,

 \times = Discolored • gloss level variation • stripped membranes parts occur

[Test Method]

The substrate used for evaluation was subject to dry etching and then immersed in a photoresist stripping agent at 70°C for 10 minutes, and the peelability was evaluated using optical and electron microscopes.

Silver alloy corrosivity: A silver alloy formed on a glass substrate was immersed in a photoresist stripping agent at 70°C for 10 minutes and evaluated for corrosivity using optical and electron microscopes.

7) WO2005/022268A1

3. Additives

DMITM is used as an additive for adhesives, rubber processing aids, and electrolytes.

♦*Adhesives*

A patent example in which proper shape is retained, bonding duration is retained without decreasing the initial tack, has excellent and powerful adhesiveness that even bonds with coated paper for which adhesion is difficult, and used in the stick adhesive that has polyvinyl pyrrolidone as the main component.⁸⁾

	Example1	Example2	Example3
Adhesive ingredient ^{a)}	95%	95%	95%
Additive	DMI TM 5%	ε-Caprolactam 5%	None
Bonding strength test result ^{b)}	100%	90%	30%
Hardness test result ^{c)}	1.01	1.51	0.98

a)Adhesive composition: 27% of polyvinyl pyrrolidone, 8% of sodium stearate, 50% of water, and 10% of glycerinb)Bonding strength test: Breaking rate of paper when high quality papers are stuck together and peeled after 3 daysc)Hardness: Penetration distance (mm) by a 12.5 g needle in 10 seconds. Smaller the penetration distance, greater the hardness

8)JP11189757A

Rubber Processing Aids

A patent example of use in a modifying agent of rubber processing aids that can avoid deterioration of rebound resilience due to addition of processing aids, and deterioration in processability due to dispersion of carbon black. Evaluation of extrusion processability using a rubber composition according to the ASTM D2230-77A method

Denaturant	Weight average molecular weight of liquid rubber	Additive amount of liquid rubber ^{a)}	60°C Repulsive ^{b)}	Wetskid resistance ^{c)}	Extrusion processability	
DMI TM	6,000	10	59	61	16	
None	e 6,000 10		55	58	12	

a) The amount of liquid rubber added is based on 100 g of SBR

- b) The test specimen exposed to the atmosphere at 60°C was measured according to JIS K-6301
- c) Measured using a portable skid tester on the road surface of ASTME-303-74 specifications at 23°C (manufactured by Stanley UK)

9)JP03281645A

♦*Electrolytes*

A patent example showing high specific conductivity and thermal stability, used as a solute precipitation inhibitor for electrolyte in which the solute of diazabicycloalkene carboxylate salt does not precipitate even at low temperatures¹⁰⁾

	Electrolyte composition(wt%)	Specific conductivity (30°C,ms/cm)			
		Initial	After the heat treatment	30 U 25 U 25 U 25 U 25 Example1 Example2	
Example1	Solute(25) γ -Butyrolactone(70) DMI TM (5)	7.1	7.2		
Example2	Solute(20) γ—Butyrolactone(65) Ethylene glycol(15)	7.0	4.9	$\begin{bmatrix} 1 & 1 & 1 & 5 \\ 0 & 1 & 1 & 1 \\ -30 & -20 & -10 & 0 & 10 & 20 & 30 \end{bmatrix}$	
Example3	Solute(10) γ-Butyrolactone(90)	4.5	4.5	Temperature (°C)	

Solute: Phthalic acid mono-1,5-Diazabicyclo[4.3.0]non-5-ene The heat treatment: 150°C, 10 hours

10)JP097895A

4. Solvent

When DMITM is used as a solvent in the ink of inkjet printers, print density, drying resistance, and storage stability of the ink are known to improve.¹¹

11)JP04339873A, JP06172690A

5. Surface treatment agent

When the surface of the Teflon, a fluorine resin, is treated using a solution (etching agent) prepared by dissolving sodium, potassium, and lithium metal polyallyl complex dispersion is dissolved in DMITM, the bonding strength of epoxy resin adhesive improves¹²)

12)JP5484501A

All references to the possible uses of our products contained in this brochure are made without any warranty, either express or implied. Nothing herein shall be construed as a representation that our products are fit for use in manufacturing finished product similar or identical to those products displayed herein or for any other purpose.

Our customers must ultimately decide on the use of our products based on their sole independent judgment without any reliance on this brochure. Nothing herein shall be construed as permission or as recommendation for uses which might infringe valid patents.

(Including patent applications), whether existing now or in the future, or as extending a license under such valid patents.

Because the conditions and methods of use on the part of our customers are beyond our control, we disclaim any liability incurred in connection with the use of our products.

For the detailed safety information, please refer to Materials Safety Data sheet of DMITM.

Health Care Business Sector Personal Care Materials Div Shiodome City center, 1-5-2, Higashi-Shimbashi,Minato-ku,Tokyo 105-7122,Japan TEL:+81-3-6253-3815 FAX:+81-3-6253-4236