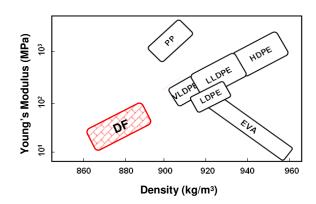


## **PP Modification, Injection**

**Impact Resistance Balance** 


### **TAFMER™ DF**

Ethylene based  $\alpha$ -olefin copolymer

TAFMER™ DF is compatible with polypropylene (PP). It is used as a modifier of PP to improve properties such as impact resistance, appearance and paintability.

General characteristics attributed to TAFMER™ DF:

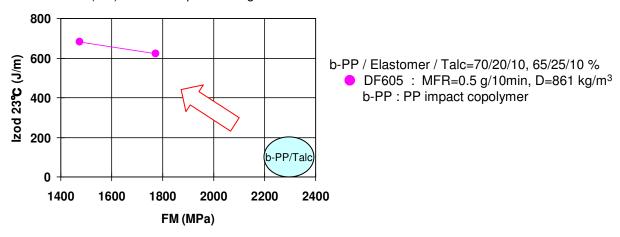
- Low Young's Modulus for Softness and Flexibility
- Low Glass Transition Temperature for low temperature Impact strength
- Compatible with PP for surface gloss



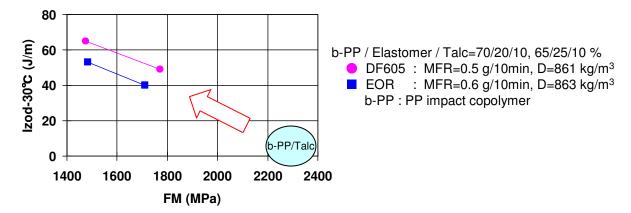
Low temperature impact resistance modification is major usage of TAFMER™ DF in PP injection molding.

## **Typical Application**

PP compound for Automotive Bumper PP compound for Automotive Instrumental Panel




**Impact Resistance Balance** 


### **Impact Resistance Modification**

TAFMER<sup>TM</sup> DF improves impact resistance of PP compound significantly.

Flexural Modulus (FM) vs. Izod Impact Strength at 23 °C



Flexural Modulus(FM) vs. Izod Impact Strength at -30 °C



### **Summary**

TAFMER™ DF improves impact resistance while maintaining required regidity of PP compound.



# **PP Modification, Injection**

**Impact Resistance Balance** 

## **Basic Properties**

| Physical Properties        | Test Method | Unit              | DF605     | DF610     | DF640     | DF710     | DF740     | DF7350 |
|----------------------------|-------------|-------------------|-----------|-----------|-----------|-----------|-----------|--------|
| MFR(190°C/2.16kg)          | ASTM D1238  | g/10min           | 0.5       | 1.2       | 3.6       | 1.2       | 3.6       | 35     |
| MFR(230°C/2.16kg)          | ASTM D1238  | g/10min           | 0.9       | 2.2       | 6.7       | 2.2       | 6.7       | 65     |
| Density                    | ASTM D1505  | kg/m <sup>3</sup> | 861       | 862       | 864       | 870       | 870       | 870    |
| Mechanical Properties      |             |                   |           |           |           |           |           |        |
| Tensile Strength at Break  | ASTM D638   | MPa               | > 5       | > 3       | > 3       | > 15      | > 8       | > 2    |
| Elongation at Break        | ASTM D638   | %                 | ><br>1000 | ><br>1000 | ><br>1000 | ><br>1000 | ><br>1000 | > 1000 |
| Torsional Rigidity         | ASTM D1043  | MPa               | 2         | 2         | 2         | 3         | 3         | 3      |
| Surface Hardness (Shore A) | ASTM D2240  | <u>-</u>          | 58        | 57        | 56        | 73        | 73        | 70     |
| Thermal Properties         |             |                   |           |           |           |           |           |        |
| Melting Point              | MCI Method  | °C                | < 50      | < 50      | < 50      | 55        | 55        | 55     |
| Brittleness Temperature    | ASTM D746   | °C                | < -70     | < -70     | < -70     | < -70     | < -70     | < -70  |

| Physical Properties        | Test Method | Unit    | DF810     | DF840     | DF8200 | DF940 | DF9200 | DF110 | DF140 |
|----------------------------|-------------|---------|-----------|-----------|--------|-------|--------|-------|-------|
| MFR(190°C/2.16kg)          | ASTM D1238  | g/10min | 1.2       | 3.6       | 18     | 3.6   | 18     | 1.2   | 3.6   |
| MFR(230°C/2.16kg)          | ASTM D1238  | g/10min | 2.2       | 6.7       | 34     | 6.7   | 33     | 2.2   | 6.7   |
| Density                    | ASTM D1505  | kg/m³   | 885       | 885       | 885    | 893   | 893    | 905   | 905   |
| Mechanical Properties      |             |         |           |           |        |       |        |       |       |
| Tensile Strength at Break  | ASTM D638   | MPa     | > 37      | > 27      | 12     | 31    | 16     | 33    | 25    |
| Elongation at Break        | ASTM D638   | %       | ><br>1000 | ><br>1000 | 950    | 900   | 900    | 750   | 750   |
| Torsional Rigidity         | ASTM D1043  | MPa     | 9         | 9         | 9      | 12    | 12     | 25    | 25    |
| Surface Hardness (Shore A) | ASTM D2240  | _       | 87        | 86        | 86     | 92    | 92     | 95    | 94    |
| Thermal Properties         |             |         |           |           |        |       |        |       |       |
| Melting Point              | MCI Method  | °C      | 66        | 66        | 66     | 77    | 77     | 94    | 93    |
| Brittleness Temperature    | ASTM D746   | °C      | < -70     | < -70     | < -70  | < -70 | < -70  | < -70 | < -70 |

Note: All of the above listed data are representative values, and not specific ones.

#### FDA

All the monomers and additives used in the above TAFMER $^{\text{TM}}$  grade are listed in the "Code of Federal Regulation, title 21 Food and Drugs, Parts 170 to 189" and "FCN (Food Contact Notification)".

#### **EU Directive**

All the monomers and additives used in the above TAFMER™ grade are listed in the EU Directive 2002/72/EC and its amendment 2008/39/EC.

The only additives with Specific Migration Limit (SML) are:

n-Octadecyl 3,5-di-t-butyl-4-hydroxy hydrocinnamate (CAS No.2082-79-3, Ref No.68320)

SML= 6mg/kg

Please ensure that the SML and Overall Migration (OM) are within the specified value in the end-use products,.







# **PP Modification, Injection**

**Impact Resistance Balance** 

#### Disclaimer:

The information contained herein is to the best of our knowledge, accurate and reliable. However, since the actual conditions of use(s) of our products are beyond our control, IT IS THE USER'S RESPONSIBILITY TO ASSUME ALL RISKS OF SUCH USE(S) FOR SPECIFIC APPLICATIONS. We make no guarantees of results and assumes no liability in connection with its recommendations or suggestions. Nothing contained herein shall be construed as a recommendation for use in violation of any patents or of applicable laws and regulations. SAMPLES ARE PROVIDED WITHOUT ANY WARRANTIES, EXPRESSED OR IMPLIED.



